\(\dfrac{d}{dx}\sin(x)=\cos(x)\)
\begin{aligned}
\dfrac{d}{dx}\sin(x) =\,&\, \lim \limits_{\Delta x\to 0} \dfrac{\sin(x+\Delta x)-\sin(x)}{\Delta x} \\
=\,&\, \lim \limits_{\Delta x\to 0} \dfrac{\sin(x)\cos(\Delta x)+\sin(\Delta x)\cos(x)-\sin(x)}{\Delta x} \\
=\,&\, \lim \limits_{\Delta x\to 0} \left[\cos(x)\dfrac{\sin(\Delta x)}{\Delta x} - \sin(x)\dfrac{1-\cos(\Delta x)}{\Delta x} \right] \\
=\,&\, \cos(x)\lim \limits_{\Delta x\to 0}\dfrac{\sin(\Delta x)}{\Delta x} - \sin(x)\lim \limits_{\Delta x\to 0}\dfrac{1-\cos(\Delta x)}{\Delta x} \\
=\,&\, \cos(x)(1) - \sin(x)(0) \\
=\,&\, \cos(x)
\end{aligned}
|
\(\dfrac{d}{dx}\cos(x)=-\sin(x)\)
\begin{aligned}
\dfrac{d}{dx}\cos(x) =\,&\, \lim \limits_{\Delta x\to 0} \dfrac{\cos(x+\Delta x)-\cos(x)}{\Delta x} \\
=\,&\, \lim \limits_{\Delta x\to 0} \dfrac{\cos(x)\cos(\Delta x)-\sin(\Delta x)\sin(x)-\cos(x)}{\Delta x} \\
=\,&\, \lim \limits_{\Delta x\to 0} \left[-\sin(x)\dfrac{\sin(\Delta x)}{\Delta x} - \cos(x)\dfrac{1-\cos(\Delta x)}{\Delta x} \right] \\
=\,&\, -\sin(x)\lim \limits_{\Delta x\to 0}\dfrac{\sin(\Delta x)}{\Delta x} - \cos(x)\lim \limits_{\Delta x\to 0}\dfrac{1-\cos(\Delta x)}{\Delta x} \\
=\,&\, -\sin(x)(1) - \cos(x)(0) \\
=\,&\, -\sin(x)
\end{aligned}
|
\(\dfrac{d}{dx}\tan(x)=\sec^2(x)\)
\begin{aligned}
\dfrac{d}{dx}\tan(x) =\,&\, \dfrac{d}{dx}\left[\dfrac{\sin(x)}{\cos(x)}\right] \\
=\,&\, \dfrac{\cos(x)\dfrac{d}{dx}\sin(x)-\sin(x)\dfrac{d}{dx}\cos(x)}{\cos^2(x)} \\
=\,&\, \dfrac{\cos(x)\cos(x)+\sin(x)\sin(x)}{\cos^2(x)} \\
=\,&\, \dfrac{\cos^2(x)+\sin^2(x)}{\cos^2(x)} \\
=\,&\, \dfrac{1}{\cos^2(x)} = \sec^2(x)
\end{aligned}
|
\(\dfrac{d}{dx}\cot(x)=-\csc^2(x)\)
\begin{aligned}
\dfrac{d}{dx}\cot(x) =\,&\, \dfrac{d}{dx}\left[\dfrac{\cos(x)}{\sin(x)}\right] \\
=\,&\, \dfrac{\sin(x)\dfrac{d}{dx}\cos(x)-\cos(x)\dfrac{d}{dx}\sin(x)}{\sin^2(x)} \\
=\,&\, \dfrac{-\sin(x)\sin(x)-\cos(x)\cos(x)}{\sin^2(x)} \\
=\,&\, \dfrac{-\left[\sin^2(x)+\cos^2(x)\right]}{\sin^2(x)} \\
=\,&\, \dfrac{-1}{\sin^2(x)} = -\csc^2(x)
\end{aligned}
|
\(\dfrac{d}{dx}\sec(x)=\sec(x)\tan(x)\)
\begin{aligned}
\dfrac{d}{dx}\sec(x) =\,&\, \dfrac{d}{dx}\left[\dfrac{1}{\cos(x)}\right] \\
=\,&\, \dfrac{\cos(x)\dfrac{d}{dx}(1)-(1)\dfrac{d}{dx}\cos(x)}{\cos^2(x)} \\
=\,&\, \dfrac{\cos(x)(0)+(1)\sin(x)}{\cos^2(x)} \\
=\,&\, \dfrac{\sin(x)}{\cos^2(x)} = \dfrac{1}{\cos(x)}\dfrac{\sin(x)}{\cos(x)}\\
=\,&\, \sec(x)\tan(x)
\end{aligned}
|
\(\dfrac{d}{dx}\csc(x)=-\csc(x)\cot(x)\)
\begin{aligned}
\dfrac{d}{dx}\csc(x) =\,&\, \dfrac{d}{dx}\left[\dfrac{1}{\sin(x)}\right] \\
=\,&\, \dfrac{\sin(x)\dfrac{d}{dx}(1)-(1)\dfrac{d}{dx}\sin(x)}{\sin^2(x)} \\
=\,&\, \dfrac{\sin(x)(0)-(1)\cos(x)}{\sin^2(x)} \\
=\,&\, \dfrac{-\cos(x)}{\sin^2(x)} = \dfrac{-1}{\sin(x)}\dfrac{\cos(x)}{\sin(x)}\\
=\,&\, -\csc(x)\cot(x)
\end{aligned}
|
3.0 - Derivada das Funções Trigonométricas Inversas Derivative of Inverse Trigonometric Functions |
\(\dfrac{d}{du}\sin^{-1}(u)=\dfrac{1}{\sqrt{1-u^2}}\)
 |
Derivada da função arco-seno
Da figura ao lado temos
\( y=\sin\alpha \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \alpha=\sin^{-1}y \hspace{0.4cm}\text{ e }\hspace{0.4cm} \cos\alpha=\sqrt{1-y^2}\)
Então,
\begin{aligned}
y =\,&\, \sin\alpha \\
\dfrac{d}{dy}y =\,&\, \dfrac{d}{dy}\sin\alpha \\
1 =\,&\, \cos\alpha\dfrac{d}{dy}\alpha = \sqrt{1-y^2}\,\dfrac{d}{dy}\sin^{-1}y\\
\dfrac{d}{dy}\sin^{-1}y =\,&\, \dfrac{1}{\sqrt{1-y^2}} \hspace{0.4cm}\text{ ou }\hspace{0.4cm} \dfrac{d}{du}\sin^{-1}(u)=\dfrac{1}{\sqrt{1-u^2}}
\end{aligned}
|
|
\(\dfrac{d}{du}\cos^{-1}(u)=-\dfrac{1}{\sqrt{1-u^2}}\)
 |
Derivada da função arco-cosseno
Da figura ao lado temos
\( x=\cos\alpha \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \alpha=\cos^{-1}x \hspace{0.4cm}\text{ e }\hspace{0.4cm} \sin\alpha=\sqrt{1-x^2}\)
Então,
\begin{aligned}
x =\,&\, \cos\alpha \\
\dfrac{d}{dx}x =\,&\, \dfrac{d}{dx}\cos\alpha \\
1 =\,&\, -\sin\alpha\dfrac{d}{dx}\alpha = -\sqrt{1-x^2}\,\dfrac{d}{dx}\cos^{-1}x\\
\dfrac{d}{dx}\cos^{-1}x =\,&\, -\dfrac{1}{\sqrt{1-x^2}} \hspace{0.4cm}\text{ ou }\hspace{0.4cm} \dfrac{d}{du}\cos^{-1}(u)=-\dfrac{1}{\sqrt{1-u^2}}
\end{aligned}
|
|
\(\dfrac{d}{du}\tan^{-1}(u)=\dfrac{1}{1+u^2}\)
 |
Derivada da função arco-tangente
Da figura ao lado temos
\( x=\tan\alpha \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \alpha=\tan^{-1}x \hspace{0.4cm}\text{ e }\hspace{0.4cm} \cos\alpha=\dfrac{1}{\sqrt{1+x^2}} \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \cos^2\alpha=\dfrac{1}{1+x^2} \)
Então,
\begin{aligned}
x =\,&\, \tan\alpha \\
\dfrac{d}{dx}x =\,&\, \dfrac{d}{dx}\tan\alpha \\
1 =\,&\, \sec^2\alpha\,\dfrac{d}{dx}\alpha = (1+x^2)\,\dfrac{d}{dx}\tan^{-1}x\\
\dfrac{d}{dx}\tan^{-1}x =\,&\, \dfrac{1}{1+x^2} \hspace{0.4cm}\text{ ou }\hspace{0.4cm} \dfrac{d}{du}\tan^{-1}(u)=\dfrac{1}{1+u^2}
\end{aligned}
|
|
\(\dfrac{d}{du}\cot^{-1}(u)=-\dfrac{1}{1+u^2}\)
 |
Derivada da função arco-cotangente
Da figura ao lado temos
\( x=\cot\alpha \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \alpha=\cot^{-1}x \hspace{0.4cm}\text{ e }\hspace{0.4cm} \sin\alpha=\dfrac{1}{\sqrt{1+x^2}} \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \sin^2\alpha=\dfrac{1}{1+x^2} \)
Então,
\begin{aligned}
x =\,&\, \cot\alpha \\
\dfrac{d}{dx}x =\,&\, \dfrac{d}{dx}\cot\alpha \\
1 =\,&\, -\csc^2\alpha\,\dfrac{d}{dx}\alpha = -(1+x^2)\,\dfrac{d}{dx}\cot^{-1}x\\
\dfrac{d}{dx}\cot^{-1}x =\,&\, -\dfrac{1}{1+x^2} \hspace{0.4cm}\text{ ou }\hspace{0.4cm} \dfrac{d}{du}\cot^{-1}(u)=-\dfrac{1}{1+u^2}
\end{aligned}
|
|
\(\dfrac{d}{du}\sec^{-1}(u)=\dfrac{1}{|u|\sqrt{u^2-1}} \)
 |
Derivada da função arco-secante
Da figura ao lado temos
\( \cos\alpha=\dfrac{1}{x} \hspace{0.4cm}\Rightarrow\hspace{0.4cm} x=\dfrac{1}{\cos\alpha}\equiv\sec\alpha \)
\( x=\sec\alpha \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \alpha=\sec^{-1}x \hspace{0.4cm}\text{ e }\hspace{0.4cm} \tan\alpha=\sqrt{x^2-1} \)
Então,
\begin{aligned}
x =\,&\, \sec\alpha \\
\dfrac{d}{dx}x =\,&\, \dfrac{d}{dx}\sec\alpha \\
1 =\,&\, \sec\alpha\tan\alpha\,\dfrac{d}{dx}\alpha = x\,\sqrt{x^2-1}\,\dfrac{d}{dx}\sec^{-1}x\\
\dfrac{d}{dx}\sec^{-1}x =\,&\, \dfrac{1}{x\,\sqrt{x^2-1}} \hspace{0.4cm}\text{ ou }\hspace{0.4cm} \dfrac{d}{du}\sec^{-1}(u)=\dfrac{1}{|u|\sqrt{u^2-1}}
\end{aligned}
|
|
\(\dfrac{d}{du}\csc^{-1}(u)=-\dfrac{1}{|u|\sqrt{u^2-1}} \)
 |
Derivada da função arco-cossecante
Da figura ao lado temos
\( \sin\alpha=\dfrac{1}{y} \hspace{0.4cm}\Rightarrow\hspace{0.4cm} y=\dfrac{1}{\sin\alpha}\equiv\csc\alpha \)
\( y=\csc\alpha \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \alpha=\csc^{-1}y \hspace{0.4cm}\text{ e }\hspace{0.4cm} \cot\alpha=\sqrt{y^2-1} \)
Então,
\begin{aligned}
y =\,&\, \csc\alpha \\
\dfrac{d}{dy}y =\,&\, \dfrac{d}{dy}\csc\alpha \\
1 =\,&\, -\csc\alpha\cot\alpha\,\dfrac{d}{dy}\alpha = -y\,\sqrt{y^2-1}\,\dfrac{d}{dy}\csc^{-1}y\\
\dfrac{d}{dy}\csc^{-1}y =\,&\, -\dfrac{1}{y\,\sqrt{y^2-1}} \hspace{0.4cm}\text{ ou }\hspace{0.4cm} \dfrac{d}{du}\csc^{-1}(u)=-\dfrac{1}{|u|\sqrt{u^2-1}}
\end{aligned}
|
|
4.0 - Fatorial 0! Factorial 0! |
\( 0\,!\,=\,1 \)
Da definição temos:
\( n\,!=n\cdot(n-1)\,! \quad\longrightarrow\quad \) Se \(\hspace{0.4cm} n = 1 \)
Então,
\begin{aligned}
1\,!=\,&\, 1\cdot(1-1)\,! \\
1\,=\,&\, 1\cdot 0\,! \\
0\,!=\,&\, 1 \hspace{2cm} \blacksquare
\end{aligned}
|
|